Agentic Artificial Intelligence Model for the Integrated Management of School Absenteeism
DOI:
https://doi.org/10.23824/ase.v0i44.1027Downloads
Abstract
School absenteeism continues to be managed in a fragmented and reactive manner, which hampers prevention and reduces equity across schools. This paper presents an agentic artificial intelligence model designed to integrate dispersed data, automate operational tasks and enhance coordination among educational stakeholders through a multi-agent architecture grounded in the MAPE-K cycle and supported by human oversight at critical points. The model is developed on the basis of a structured narrative review of scientific and regulatory literature (2000–2025) and is organised into twelve functional modules that incorporate ethical safeguards, enhanced traceability, interoperability standards and API-based integration. The proposal is implemented through a multilevel architecture encompassing the school, local area and district levels, aligned with existing educational protocols and the requirements of the GDPR and the EU AI Act. The system automates the ingestion and analysis of attendance data, generates early-risk alerts, supports personalised planning and coordinates interventions among teachers, families and educational services. It integrates HITL oversight mechanisms, a framework of key performance indicators and a phased implementation roadmap. The findings indicate high technical and organisational feasibility, although dependent on data quality, potential algorithmic bias and the need for robust institutional governance. The model strengthens early detection and evidence-informed decision-making, while maintaining human supervision to ensure equity, transparency and public accountability.
References
1EdTech Consortium. (2019). Learning Tools Interoperability® (LTI®) 1.3 Core Specification. 1EdTech Consortium. https://www.imsglobal.org/spec/lti/v1p3
Abbas, N., Andersson, J., & Löwe, W. (2010, August). Autonomic software product lines (ASPL). In Proceedings of the Fourth European Conference on Software Architecture: Companion Volume (pp. 324-331).
Advanced Distributed Learning Initiative. (2017). Experience API (xAPI) Specification Version 1.0.3. U.S. Department of Defense. https://adlnet.gov/projects/xapi
Argyris, C., & Schön, D. A. (1978). Organizational learning: A theory of action perspective. Reading, MA: Addison-Wesley. ISBN 0-201-00174-8
Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, Z. D., & Blundell, C. (2020). Agent57: Outperforming the Atari human benchmark. Proceedings of Machine Learning Research, 119, 507–517. https://proceedings.mlr.press/v119/badia20a.html
Balfanz, R., & Byrnes, V. (2018). Using data and the human touch: Evaluating the NYC inter-agency campaign to reduce chronic absenteeism. Journal of Education for Students Placed at Risk, 23(1–2), 107–121. https://doi.org/10.1080/10824669.2018.1435283
Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’21) (pp. 610–623). Association for Computing Machinery. https://doi.org/10.1145/3442188.3445922
Bowers, A. J., Sprott, R., y Taff, S. A. (2013). Do we know who will drop out? A review of the predictors of dropping out of high school: Precision, sensitivity, and specificity. The High School Journal, 96(2), 77–100. https://doi.org/10.1353/hsj.2013.0000
Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.) (2000). How people learn: Brain, mind, experience, and school. National Academy Press.
DeLoach, S. A., & Valenzuela, J. P. (2021). Multi-agent systems engineering: A coordinated model-based approach. Journal of Autonomous Agents and Multi-Agent Systems, 35(2), 27. https://doi.org/10.1007/s10458-021-09537-3
Deming, W. E. (1986). Out of the crisis. Cambridge, MA: Massachusetts Institute of Technology, Center for Advanced Engineering Study.
Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint https://arxiv.org/abs/1702.08608
Earl, L., & Timperley, H. (2015). Evaluative thinking for successful educational innovation (OECD Education Working Papers No. 122). OECD Publishing. https://doi.org/10.1787/5jrxtk1jtdwf-en
Esteban Frades, S. (2025). Impactos de la inteligencia artificial en la educación. Avances en Supervisión Educativa, 43. https://doi.org/10.23824/ase.v0i43.978
Europass. (2025, 11 de agosto). Latest developments to the European Learning Model. https://europass.europa.eu/en/news/latest-developments-european-learning-model
European Commission. (2017). New European Interoperability Framework (EIF): Promoting seamless services and data flows for European public administrations [Brochure]. Publications Office of the European Union. https://op.europa.eu/en/publication-detail/-/publication/bca40dde-deee-11e7-9749-01aa75ed71a1
European Commission, High-Level Expert Group on Artificial Intelligence. (2019). Ethics guidelines for trustworthy AI. European Commission. https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
European Data Protection Board. (2020). Guidelines 4/2019 on Article 25 Data Protection by Design and by Default (Version 2.0). Brussels: European Data Protection Board. https://edpb.europa.eu/our-work-tools/our-documents/guidelines/guidelines-42019-article-25-data-protection-design-and_en
European Data Protection Board. (2024). Opinion 28/2024 on certain data protection aspects related to the processing of personal data in the context of AI models. Brussels: European Data Protection Board. https://www.edpb.europa.eu/our-work-tools/our-documents/opinion-board-art-64/opinion-282024-certain-data-protection-aspects_en edpb.europa.eu
European Parliament and the Council of the European Union. (2016). Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data (General Data Protection Regulation). Official Journal of the European Union, L 119, 1–88. https://eur-lex.europa.eu/eli/reg/2016/679/oj
European Parliament and the Council of the European Union. (2024, June 13). Regulation (EU) 2024/1689 of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). Official Journal of the European Union, L 202, 1–172. https://eur-lex.europa.eu/eli/reg/2024/1689/oj
Faci, F. (2011). El abandono escolar prematuro en España. Avances en Supervisión Educativa, 14. https://doi.org/10.23824/ase.v0i14.468
Ferraiolo, D. F., & Kuhn, D. R. (1992). Role-based access controls. In Proceedings of the 15th National Computer Security Conference (pp. 554–563). National Institute of Standards and Technology. https://csrc.nist.rip/pubs/conference/1992/10/13/rolebased-access-controls/final
Floridi, L. (Ed.). (2021). Ethics, governance, and policies in artificial intelligence (Philosophical Studies Series, 144). Springer. https://doi.org/10.1007/978-3-030-81907-1
Floridi, L., & Chiriatti, M. (2020). GPT-3: Its nature, scope, limits, and consequences. Minds and Machines, 30(4), 681–694. https://doi.org/10.1007/s11023-020-09548-1
Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., & Vayena, E. (2018). AI4People-An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 31(2), 161–188 https://doi.org/10.1007/s11023-018-9482-5
Georgievski, I., y Aiello, M. (2016). An overview of Hierarchical Task Network planning. ACM Computing Surveys, 49(1), Article 37, 1–41. https://doi.org/10.48550/arXiv.1403.7426
Ghallab, M., Nau, D., & Traverso, P. (2016). Automated planning and acting. Cambridge University Press. https://doi.org/10.1017/CBO9781139583923
Gobierno de Aragón y Ayuntamiento de Zaragoza. (2017). Programa de actuación para la prevención del absentismo escolar. Aprobado por la Comisión de Seguimiento del Convenio Marco de Colaboración entre el Gobierno de Aragón y el Ayuntamiento de Zaragoza el 4 de abril de 2017. https://www.educaragon.org/
Graves, A., Wayne, G., & Danihelka, I. (2014). Neural Turing machines. arXiv preprint arXiv:1410.5401. https://arxiv.org/abs/1410.5401
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Computing Surveys, 51(5), 1–42. https://dl.acm.org/doi/10.1145/3236009
Harris, A. (2014). Distributed leadership matters: Perspectives, practicalities, and potential. Corwin Press.
Herrera, M., Pérez-Hernández, M., Kumar Parlikad, A., & Izquierdo, J. (2020). Multi-Agent Systems and Complex Networks: Review and Applications in Systems Engineering. Processes, 8(3), 312. https://doi.org/10.3390/pr8030312
Holgado, A. (2018). Integration analysis of solutions based on software as a service learning ecosystems [Tesis doctoral]. Universidad de Salamanca. https://repositorio.grial.eu/
Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Boston, MA: Centre for Curriculum Redesign. https://curriculumredesign.org/wp-content/uploads/AIED-Book-Excerpt-CCR.pdf
Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics to support study success in higher education: A systematic review. Educational Technology Research and Development, 68(4), 1961-1990. https://doi.org/10.1007/s11423-020-09788-z
Jacobson, M. J., Levin, J. A., & Kapur, M. (2019). Education as a complex system: Conceptual and methodological implications. Educational Researcher, 48(2), 112–119. https://doi.org/10.3102/0013189X19826958
Jennings, N. R., & Bussmann, S. (2003). Agent-based control systems: Why are they suited to engineering complex systems? IEEE Control Systems Magazine, 23(3), 61–73. https://doi.org/10.1109/MCS.2003.1200249
Kaplan, R. S., & Norton, D. P. (1996). The balanced scorecard: Translating strategy into action. Boston, MA: Harvard Business School Press.
Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. Computer, 36(1), 41–50. https://doi.org/10.1109/MC.2003.1160055
Li, Y., & Tan, C. (2019). A survey of the consensus for multi-agent systems. Systems Science y Control Engineering, 7(1), 468–482. https://doi.org/10.1080/21642583.2019.1695689
Liang, P., Wu, C., Zhang, Y., Lee, J., & Zou, J. (2024). AutoGen: Enabling next-gen multi-agent systems with LLMs. arXiv preprint arXiv:2308.08155. https://doi.org/10.48550/arXiv.2308.08155
Long, D., & Magerko, B. (2020). What Is AI Literacy? Competencies and Design Considerations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1-16). Association for Computing Machinery. https://doi.org/10.1145/3313831.3376727
McAfee, A., & Brynjolfsson, E. (2017). Machine, platform, crowd: Harnessing our digital future. W. W. Norton y Company.
Michie, D. (1963). Experiments on the mechanization of game-learning Part I. Characterization of the model and its parameters. Computer Journal, 6(3), 232–236. https://doi.org/10.1093/comjnl/6.3.232
Mittelstadt, B. D. (2019). Principles alone cannot guarantee ethical AI. Nature Machine Intelligence, 1(11), 501–507. https://doi.org/10.1038/s42256-019-0114-4
OpenAI. (2023). GPT-4 Technical Report. arXiv preprint arXiv:2303.08774. https://doi.org/10.48550/arXiv.2303.08774
Organisation for Economic Co-operation and Development (OECD). (2019). Measuring innovation in education 2019: What has changed in the classroom? Paris: OECD Publishing. https://doi.org/10.1787/9789264311671-en
Organisation for Economic Co-operation and Development (OECD). (2023a). The importance of knowledge bases for artificial intelligence. Paris: OECD Publishing. https://doi.org/10.1787/a8d820bd-en
Organisation for Economic Co-operation and Development (OECD). (2023b). OECD Digital Education Outlook 2023: Towards an Effective Digital Education Ecosystem. OECD Publishing. https://doi.org/10.1787/c74f03de-en
Organisation for Economic Co-operation and Development (OECD). (2023c), “Proposal for an action plan to reduce early school leaving in Spain”, No. 71, OECD Publishing, Paris, https://doi.org/10.1787/0c249e7a-en. (En español: https://doi.org/10.1787/9bc3285d-es.)
Outay, F., Jabeur, N., Bellalouna, F., & Al Hamzi, T. (2024). Multi-agent system-based framework for an intelligent management of competency building. Smart Learning Environments, 11(1), Article 41. https://doi.org/10.1186/s40561-024-00328-3
Pandey, B. K (2025, octubre 27). How Agentic AI Systems Actually Work (A Complete Blueprint) [Infografía]. LinkedIn. https://www.linkedin.com/in/brijkishorepandey/.
Qin, J., Han, X., Liang, X., Chen, Y., & Yu, D. (2024). LangChain: Building applications with large language models. arXiv preprint arXiv:2402.19085. https://doi.org/10.48550/arXiv.2402.19085
Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., Song, F., Aslanides, J., Henderson, S., Ring, R., Young, S., Rutherford, E., Hennigan, T., Menick, J., Cassirer, A., Powell, R., van den Driessche, G., Hendricks, L. A., Rauh, M., Huang, P.-S., … Irving, G. (2021). Scaling language models: Methods, analysis & insights from training Gopher. arXiv. https://doi.org/10.48550/arXiv.2112.11446
Rahwan, I. (2018). Society-in-the-loop: Programming the algorithmic social contract. Ethics and Information Technology, 20(1), 5-14. https://doi.org/10.1007/s10676-017-9430-8
Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach (4th ed.). Pearson Education. ISBN 978-0134610993
Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green AI. Communications of the ACM, 63(12), 54–63. https://doi.org/10.1145/3381831
Senge, P. M. (2006). The Fifth Discipline: The Art and Practice of the Learning Organization. Doubleday/Currency. ISBN-10: 0385517254
Sevilla, A., Cuevas-Ruiz, P., Rello, L., y Sanz, I. (2025). La inteligencia artificial en la educación: oportunidades, retos y equidad en un nuevo paradigma de aprendizaje. Papeles de Economía Española, 184, 1–20. https://www.funcas.es/wp-content/uploads/2025/07/PEE_184_Sevilla_et-al.pdf
Shneiderman, B. (2020). Human-centered artificial intelligence: Reliable, safe & trustworthy. International Journal of Human–Computer Interaction, 36(6), 495–504. https://doi.org/10.1080/10447318.2020.1741118
Silver, D., Schrittwieser, J., Hubert, T., Antonoglou, I., Lai, M., Guez, A., ... Hassabis, D. (2021). Reward is enough. Artificial Intelligence, 299, 103535. https://doi.org/10.1016/j.artint.2021.103535
Simon, H. A. (1997). Modeling bounded rationality. Cambridge, MA: MIT Press.
Spillane, J. P. (2006). Distributed leadership. San Francisco, CA: Jossey-Bass.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press. https://mitpress.mit.edu/9780262039246/reinforcement-learning/
United Nations Educational, Scientific and Cultural Organization (UNESCO). (2021, November). Recommendation on the Ethics of Artificial Intelligence. Paris: UNESCO Publishing. https://unesdoc.unesco.org/ark:/48223/pf0000381137
Vincent-Lancrin, S., & González-Sancho, C. (2023). Interoperability: unifying and maximising data reuse within digital education ecosystems. En OECD Digital Education Outlook 2023: Towards an effective digital education ecosystem (pp. 274–296). OECD Publishing. https://doi.org/10.1787/c74f03de-en
Wooldridge, M. (2009). An introduction to multiagent systems (2nd ed.). Wiley. ISBN 978-0470519462
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16, Article 39. https://doi.org/10.1186/s41239-019-0171-0
Zhu, C., Dastani, M., & Wang, S. (2024). A survey of multi-agent deep reinforcement learning with communication. Autonomous Agents and Multi-Agent Systems, 38(1), Article 4. https://doi.org/10.1007/s10458-023-09633-6
How to Cite
Issue
Section
Published
Keywords:
Agentic artificial intelligence, multi-agent systems, school absenteeism, educational governance; human-in-the-loop supervision (HITL), organizational learning, ethical and regulatory compliance, equityLicense
Copyright (c) 2025 Fernando Faci Lucia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Attribution Share-Alike CC BY-SA
Those authors who have publications with this magazine, accept the following terms:
A) The authors will retain their copyrights, which will be simultaneously subject to the Creative Commons Attribution License that allows others to re-mix, modify and develop on your work even for commercial purposes, provided they credit you And to license their new works under the same terms.
B) The authors will retain the rights of exploitation of the intellectual property of this work, and especially the rights of reproduction, distribution, transformation in any of its modalities and public communication of said work, which will be simultaneously subject to the License Of recognition of Creative Commons that allows others to re-mix, modify and develop on your work even for commercial purposes, provided they credit you and license your new works under the same terms.
Creative Commons Attribution-ShareAlike 4.0 International Public License