Un modelo de IA agéntica para la gestión integral del absentismo escolar

Autores/as

  • Fernando Faci Lucia

DOI:

https://doi.org/10.23824/ase.v0i44.1027

Descargas

Resumen

El absentismo escolar continúa gestionándose de forma fragmentada y reactiva, lo que dificulta la prevención y reduce la equidad entre centros. Este trabajo presenta un modelo de inteligencia artificial agéntica orientado a integrar datos, automatizar tareas y mejorar la coordinación entre actores educativos mediante una arquitectura multiagente basada en el ciclo MAPE-K y con supervisión humana en puntos críticos. El modelo se desarrolla a partir de una revisión narrativa estructurada de literatura científica y normativa (2000–2025) y se articula en doce módulos funcionales que incorporan salvaguardas éticas, trazabilidad, estándares de interoperabilidad e integración por API. La propuesta se implementa en una arquitectura multinivel que comprende centro, zona y distrito, alineada con los protocolos educativos vigentes y con los requisitos del RGPD y del AI Act. El sistema automatiza la ingestión y el análisis de datos de asistencia, genera alertas tempranas, facilita la planificación personalizada y coordina intervenciones entre docentes, familias y servicios educativos, apoyado en puntos HITL, un marco de indicadores clave de desempeño y una hoja de ruta de implantación progresiva. Los resultados indican una elevada viabilidad técnica y organizativa, aunque condicionada por la calidad de los datos, los riesgos de sesgo y la necesidad de una gobernanza institucional sólida. El modelo refuerza la detección temprana y la toma de decisiones basadas en evidencia, siempre bajo supervisión humana para garantizar equidad, transparencia y responsabilidad pública.

Referencias

1EdTech Consortium. (2019). Learning Tools Interoperability® (LTI®) 1.3 Core Specification. 1EdTech Consortium. https://www.imsglobal.org/spec/lti/v1p3

Abbas, N., Andersson, J., & Löwe, W. (2010, August). Autonomic software product lines (ASPL). In Proceedings of the Fourth European Conference on Software Architecture: Companion Volume (pp. 324-331).

Advanced Distributed Learning Initiative. (2017). Experience API (xAPI) Specification Version 1.0.3. U.S. Department of Defense. https://adlnet.gov/projects/xapi

Argyris, C., & Schön, D. A. (1978). Organizational learning: A theory of action perspective. Reading, MA: Addison-Wesley. ISBN 0-201-00174-8

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, Z. D., & Blundell, C. (2020). Agent57: Outperforming the Atari human benchmark. Proceedings of Machine Learning Research, 119, 507–517. https://proceedings.mlr.press/v119/badia20a.html

Balfanz, R., & Byrnes, V. (2018). Using data and the human touch: Evaluating the NYC inter-agency campaign to reduce chronic absenteeism. Journal of Education for Students Placed at Risk, 23(1–2), 107–121. https://doi.org/10.1080/10824669.2018.1435283

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’21) (pp. 610–623). Association for Computing Machinery. https://doi.org/10.1145/3442188.3445922

Bowers, A. J., Sprott, R., y Taff, S. A. (2013). Do we know who will drop out? A review of the predictors of dropping out of high school: Precision, sensitivity, and specificity. The High School Journal, 96(2), 77–100. https://doi.org/10.1353/hsj.2013.0000

Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.) (2000). How people learn: Brain, mind, experience, and school. National Academy Press.

DeLoach, S. A., & Valenzuela, J. P. (2021). Multi-agent systems engineering: A coordinated model-based approach. Journal of Autonomous Agents and Multi-Agent Systems, 35(2), 27. https://doi.org/10.1007/s10458-021-09537-3

Deming, W. E. (1986). Out of the crisis. Cambridge, MA: Massachusetts Institute of Technology, Center for Advanced Engineering Study.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint https://arxiv.org/abs/1702.08608

Earl, L., & Timperley, H. (2015). Evaluative thinking for successful educational innovation (OECD Education Working Papers No. 122). OECD Publishing. https://doi.org/10.1787/5jrxtk1jtdwf-en

Esteban Frades, S. (2025). Impactos de la inteligencia artificial en la educación. Avances en Supervisión Educativa, 43. https://doi.org/10.23824/ase.v0i43.978

Europass. (2025, 11 de agosto). Latest developments to the European Learning Model. https://europass.europa.eu/en/news/latest-developments-european-learning-model

European Commission. (2017). New European Interoperability Framework (EIF): Promoting seamless services and data flows for European public administrations [Brochure]. Publications Office of the European Union. https://op.europa.eu/en/publication-detail/-/publication/bca40dde-deee-11e7-9749-01aa75ed71a1

European Commission, High-Level Expert Group on Artificial Intelligence. (2019). Ethics guidelines for trustworthy AI. European Commission. https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

European Data Protection Board. (2020). Guidelines 4/2019 on Article 25 Data Protection by Design and by Default (Version 2.0). Brussels: European Data Protection Board. https://edpb.europa.eu/our-work-tools/our-documents/guidelines/guidelines-42019-article-25-data-protection-design-and_en

European Data Protection Board. (2024). Opinion 28/2024 on certain data protection aspects related to the processing of personal data in the context of AI models. Brussels: European Data Protection Board. https://www.edpb.europa.eu/our-work-tools/our-documents/opinion-board-art-64/opinion-282024-certain-data-protection-aspects_en edpb.europa.eu

European Parliament and the Council of the European Union. (2016). Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data (General Data Protection Regulation). Official Journal of the European Union, L 119, 1–88. https://eur-lex.europa.eu/eli/reg/2016/679/oj

European Parliament and the Council of the European Union. (2024, June 13). Regulation (EU) 2024/1689 of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). Official Journal of the European Union, L 202, 1–172. https://eur-lex.europa.eu/eli/reg/2024/1689/oj

Faci, F. (2011). El abandono escolar prematuro en España. Avances en Supervisión Educativa, 14. https://doi.org/10.23824/ase.v0i14.468

Ferraiolo, D. F., & Kuhn, D. R. (1992). Role-based access controls. In Proceedings of the 15th National Computer Security Conference (pp. 554–563). National Institute of Standards and Technology. https://csrc.nist.rip/pubs/conference/1992/10/13/rolebased-access-controls/final

Floridi, L. (Ed.). (2021). Ethics, governance, and policies in artificial intelligence (Philosophical Studies Series, 144). Springer. https://doi.org/10.1007/978-3-030-81907-1

Floridi, L., & Chiriatti, M. (2020). GPT-3: Its nature, scope, limits, and consequences. Minds and Machines, 30(4), 681–694. https://doi.org/10.1007/s11023-020-09548-1

Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., & Vayena, E. (2018). AI4People-An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines, 31(2), 161–188 https://doi.org/10.1007/s11023-018-9482-5

Georgievski, I., y Aiello, M. (2016). An overview of Hierarchical Task Network planning. ACM Computing Surveys, 49(1), Article 37, 1–41. https://doi.org/10.48550/arXiv.1403.7426

Ghallab, M., Nau, D., & Traverso, P. (2016). Automated planning and acting. Cambridge University Press. https://doi.org/10.1017/CBO9781139583923

Gobierno de Aragón y Ayuntamiento de Zaragoza. (2017). Programa de actuación para la prevención del absentismo escolar. Aprobado por la Comisión de Seguimiento del Convenio Marco de Colaboración entre el Gobierno de Aragón y el Ayuntamiento de Zaragoza el 4 de abril de 2017. https://www.educaragon.org/

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural Turing machines. arXiv preprint arXiv:1410.5401. https://arxiv.org/abs/1410.5401

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Computing Surveys, 51(5), 1–42. https://dl.acm.org/doi/10.1145/3236009

Harris, A. (2014). Distributed leadership matters: Perspectives, practicalities, and potential. Corwin Press.

Herrera, M., Pérez-Hernández, M., Kumar Parlikad, A., & Izquierdo, J. (2020). Multi-Agent Systems and Complex Networks: Review and Applications in Systems Engineering. Processes, 8(3), 312. https://doi.org/10.3390/pr8030312

Holgado, A. (2018). Integration analysis of solutions based on software as a service learning ecosystems [Tesis doctoral]. Universidad de Salamanca. https://repositorio.grial.eu/

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Boston, MA: Centre for Curriculum Redesign. https://curriculumredesign.org/wp-content/uploads/AIED-Book-Excerpt-CCR.pdf

Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics to support study success in higher education: A systematic review. Educational Technology Research and Development, 68(4), 1961-1990. https://doi.org/10.1007/s11423-020-09788-z

Jacobson, M. J., Levin, J. A., & Kapur, M. (2019). Education as a complex system: Conceptual and methodological implications. Educational Researcher, 48(2), 112–119. https://doi.org/10.3102/0013189X19826958

Jennings, N. R., & Bussmann, S. (2003). Agent-based control systems: Why are they suited to engineering complex systems? IEEE Control Systems Magazine, 23(3), 61–73. https://doi.org/10.1109/MCS.2003.1200249

Kaplan, R. S., & Norton, D. P. (1996). The balanced scorecard: Translating strategy into action. Boston, MA: Harvard Business School Press.

Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. Computer, 36(1), 41–50. https://doi.org/10.1109/MC.2003.1160055

Li, Y., & Tan, C. (2019). A survey of the consensus for multi-agent systems. Systems Science y Control Engineering, 7(1), 468–482. https://doi.org/10.1080/21642583.2019.1695689

Liang, P., Wu, C., Zhang, Y., Lee, J., & Zou, J. (2024). AutoGen: Enabling next-gen multi-agent systems with LLMs. arXiv preprint arXiv:2308.08155. https://doi.org/10.48550/arXiv.2308.08155

Long, D., & Magerko, B. (2020). What Is AI Literacy? Competencies and Design Considerations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1-16). Association for Computing Machinery. https://doi.org/10.1145/3313831.3376727

McAfee, A., & Brynjolfsson, E. (2017). Machine, platform, crowd: Harnessing our digital future. W. W. Norton y Company.

Michie, D. (1963). Experiments on the mechanization of game-learning Part I. Characterization of the model and its parameters. Computer Journal, 6(3), 232–236. https://doi.org/10.1093/comjnl/6.3.232

Mittelstadt, B. D. (2019). Principles alone cannot guarantee ethical AI. Nature Machine Intelligence, 1(11), 501–507. https://doi.org/10.1038/s42256-019-0114-4

OpenAI. (2023). GPT-4 Technical Report. arXiv preprint arXiv:2303.08774. https://doi.org/10.48550/arXiv.2303.08774

Organisation for Economic Co-operation and Development (OECD). (2019). Measuring innovation in education 2019: What has changed in the classroom? Paris: OECD Publishing. https://doi.org/10.1787/9789264311671-en

Organisation for Economic Co-operation and Development (OECD). (2023a). The importance of knowledge bases for artificial intelligence. Paris: OECD Publishing. https://doi.org/10.1787/a8d820bd-en

Organisation for Economic Co-operation and Development (OECD). (2023b). OECD Digital Education Outlook 2023: Towards an Effective Digital Education Ecosystem. OECD Publishing. https://doi.org/10.1787/c74f03de-en

Organisation for Economic Co-operation and Development (OECD). (2023c), “Proposal for an action plan to reduce early school leaving in Spain”, No. 71, OECD Publishing, Paris, https://doi.org/10.1787/0c249e7a-en. (En español: https://doi.org/10.1787/9bc3285d-es.)

Outay, F., Jabeur, N., Bellalouna, F., & Al Hamzi, T. (2024). Multi-agent system-based framework for an intelligent management of competency building. Smart Learning Environments, 11(1), Article 41. https://doi.org/10.1186/s40561-024-00328-3

Pandey, B. K (2025, octubre 27). How Agentic AI Systems Actually Work (A Complete Blueprint) [Infografía]. LinkedIn. https://www.linkedin.com/in/brijkishorepandey/.

Qin, J., Han, X., Liang, X., Chen, Y., & Yu, D. (2024). LangChain: Building applications with large language models. arXiv preprint arXiv:2402.19085. https://doi.org/10.48550/arXiv.2402.19085

Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., Song, F., Aslanides, J., Henderson, S., Ring, R., Young, S., Rutherford, E., Hennigan, T., Menick, J., Cassirer, A., Powell, R., van den Driessche, G., Hendricks, L. A., Rauh, M., Huang, P.-S., … Irving, G. (2021). Scaling language models: Methods, analysis & insights from training Gopher. arXiv. https://doi.org/10.48550/arXiv.2112.11446

Rahwan, I. (2018). Society-in-the-loop: Programming the algorithmic social contract. Ethics and Information Technology, 20(1), 5-14. https://doi.org/10.1007/s10676-017-9430-8

Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach (4th ed.). Pearson Education. ISBN 978-0134610993

Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green AI. Communications of the ACM, 63(12), 54–63. https://doi.org/10.1145/3381831

Senge, P. M. (2006). The Fifth Discipline: The Art and Practice of the Learning Organization. Doubleday/Currency. ISBN-10: 0385517254

Sevilla, A., Cuevas-Ruiz, P., Rello, L., y Sanz, I. (2025). La inteligencia artificial en la educación: oportunidades, retos y equidad en un nuevo paradigma de aprendizaje. Papeles de Economía Española, 184, 1–20. https://www.funcas.es/wp-content/uploads/2025/07/PEE_184_Sevilla_et-al.pdf

Shneiderman, B. (2020). Human-centered artificial intelligence: Reliable, safe & trustworthy. International Journal of Human–Computer Interaction, 36(6), 495–504. https://doi.org/10.1080/10447318.2020.1741118

Silver, D., Schrittwieser, J., Hubert, T., Antonoglou, I., Lai, M., Guez, A., ... Hassabis, D. (2021). Reward is enough. Artificial Intelligence, 299, 103535. https://doi.org/10.1016/j.artint.2021.103535

Simon, H. A. (1997). Modeling bounded rationality. Cambridge, MA: MIT Press.

Spillane, J. P. (2006). Distributed leadership. San Francisco, CA: Jossey-Bass.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press. https://mitpress.mit.edu/9780262039246/reinforcement-learning/

United Nations Educational, Scientific and Cultural Organization (UNESCO). (2021, November). Recommendation on the Ethics of Artificial Intelligence. Paris: UNESCO Publishing. https://unesdoc.unesco.org/ark:/48223/pf0000381137

Vincent-Lancrin, S., & González-Sancho, C. (2023). Interoperability: unifying and maximising data reuse within digital education ecosystems. En OECD Digital Education Outlook 2023: Towards an effective digital education ecosystem (pp. 274–296). OECD Publishing. https://doi.org/10.1787/c74f03de-en

Wooldridge, M. (2009). An introduction to multiagent systems (2nd ed.). Wiley. ISBN 978-0470519462

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16, Article 39. https://doi.org/10.1186/s41239-019-0171-0

Zhu, C., Dastani, M., & Wang, S. (2024). A survey of multi-agent deep reinforcement learning with communication. Autonomous Agents and Multi-Agent Systems, 38(1), Article 4. https://doi.org/10.1007/s10458-023-09633-6

Cómo citar

Faci Lucia, F. (2025). Un modelo de IA agéntica para la gestión integral del absentismo escolar. Avances En Supervisión Educativa, 44. https://doi.org/10.23824/ase.v0i44.1027

Publicado

31-12-2025

Palabras clave:

Inteligencia artificial agéntica, sistemas multiagente; absentismo escolar, gobernanza educativa, supervisión humana en el bucle (HITL), aprendizaje organizativo, cumplimiento ético y normativo, equidad